(P) Pearson Edexcel

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE
Mathematics A (4MA1)
Paper 1HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Publications Code 4MA1_1HR_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission
- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths
Apart from Questions 10, 14, 15, 22, 24 the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Q		Working	Answer	Mark

$\mathbf{2}$	$0.65 \times 300 \mathrm{oe}$			M1
		195		A1 (SCB1 for 105)

| $\mathbf{3}$ | $12.8^{2}+x^{2}=16^{2}$ oe or
 $163.84+x^{2}=256$ or
 $\left(x^{2}=\right) 16^{2}-12.8^{2}(=92.16)$ or
 $\left(x^{2}=\right) 256-163.84(=92.16)$ | | M1 for applying Pythagoras theorem correctly
 Allow |
| :--- | :--- | :--- | :--- | :--- |
| | $(x=) \sqrt{16^{2}-12.8^{2}}(=\sqrt{92.16})(=9.6)$ or
 $(x=) \sqrt{256-163.84}(=\sqrt{92.16})(=9.6)$ | | $\cos ^{-1}\left(\frac{12.8}{16}\right)(=36.9 \ldots)$ and
 $\frac{x}{\sin (36.9 . . .)}=\frac{16}{(\sin 90)}$ |
| | $(12.8-" 9.6 ")+" 9.6 "+" 9.6^{\prime \prime}+16+16+16$ oe | | M1 for square rooting
 Allow $x=\frac{16}{(\sin 90)} \times \sin (36.9 \ldots)$ |
| | | 70.4 | M1 (dep on M1) for a complete method to find
 the perimeter |
| | | | A1 oe e.g. $\frac{352}{5}$ |

(a)		$15,0,-1,3$	2	B2 for 4 correct values (B1 for 2 or 3 correct values)
(b)	$(-2,15)(-1,8)(0,3)(2,-1)(3,0)(4,3)$	correct graph	M1 (dep on B1) ft from (a) for at least 5 points plotted correctly	
		A1 for a correct graph (clear intention to go through all the points and which must be curved at the bottom) Note: If a fully correct graph is shown, but an incomplete table is shown in (a), then award the marks for (a)		

$\mathbf{5}$			4	B1 for 80
	for $\frac{a+75}{2}=74$ oe or 73		M1 for setting up an equation using the median or for 73	
	for $80-16(=64)$ oe			M1 for using the range correctly or for 64
		$64,73,80$		A1 answers can be in any order
				Total 4 marks

6 (a)	$36,72,108, \ldots$ and $120,240,360$, or $2,2,3,3$ and $2,2,2,3,5$ or $\text { or } \frac{36 \times 120}{12} \text { or } 2,2,2,3,3,5 \text { oe }$	$\begin{array}{\|l\|} \hline 2 \\ \hline 2 \\ \hline 3 \\ \hline \end{array}$	$\begin{aligned} & \hline 36 \\ & \hline 18 \\ & \hline 9 \\ & \hline 3 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 120 \\ \hline 60 \\ \hline 30 \\ \hline \mathbf{1 0} \\ \hline \end{array}$		2	M1for any correct valid method e.g. for starting to list at least three multiples of each number $2,2,3,3$ and $2,2,2,3,5$ seen (may be in a factor tree or a ladder diagram and ignore 1) (Allow 2×2 as 4) or a fully correct "Venn" diagram
					360		A1 or $2^{3} \times 3^{2} \times 5$ oe (allow $2^{3} \cdot 3^{2} \cdot 5$)
(b)					$5^{2} \times 7^{4} \times 11$	2	B2 for $5^{2} \times 7^{4} \times 11$ (in any order) (B1 for 660275 or correct unsimplified product or $5^{a} \times 7^{b} \times 11^{c}$ where 2 of a, b and c are correct)
							Total 4 marks

| $\mathbf{7}$ | $220 \div 80\left(=2.75\right.$ or $\left.\frac{11}{4}\right)$ oe | | M1 for a method to find the time from B to C |
| :--- | :--- | :--- | :--- | :--- |
| | $72 \times \frac{50}{60}(=60)$ oe | | M1 for a method to find the distance from C to
 D
 Allow $0.83(333 \ldots)$ to 2 dp truncated or
 rounded |
| | $\frac{245+220+" 60 "}{2.5+" 2.75 "+\frac{50}{60}\left(=\frac{525}{73 / 12}\right) \text { oe }}$M1 for a complete method to find the average
 speed for entire journey
 $0.83(333 \ldots$.$) to 2 dp truncated or rounded$
 $6.0(8333 \ldots)$ to 2 sf truncated or rounded | | |
| | | 86.3 | A1 for 86.3-86.4 |

$\mathbf{8}$ (a)		50000	1	B1
(b)		6×10^{-5}	1	B1
(c)	$2.5 \times 10^{512-700}$ or 2.5×10^{n} or 0.25×10^{-187} or $p \times 10^{-188}$ where $1 \leq p<10$	2	M1	
		2.5×10^{-188}		A1

$\mathbf{9}$ (a)		x^{9}	1	B1 cao	
	(b)		$64 y^{6}$	2	B2 for $64 y^{6}$ $\left(\right.$ B1 for $k y^{6}$ where $k \neq 64$ or $64 y^{\prime n}$ where $\left.m \neq 6\right)$
(c)	$(n \pm 3)(n \pm 4)$	2	M1 for $(n \pm 3)(n \pm 4)$ or $(n+a)(n+b)$ where $a b=12$ or $a+b=-7$ Condone use of a different letter to n		
			$(n-3)(n-4)$		A1
				Total 5 marks	

10	$3 \times 2.5(=7.5)$ oe or $2 \times 3 \times 2.5(=15)$ oe or $12 \times 3(=36)$ oe or $2 \times 12 \times 3(=72)$ oe or $12 \times 2.5(=30)$		6	M1 for area of rectangle
	$\begin{aligned} & (2 \times 3 \times 2.5)+(2 \times 12 \times 3)+(12 \times 2.5)(=117) \text { or } \\ & (2 \times 7.5)+(2 \times 36)+(12 \times 2.5)(=117) \text { or } \\ & 15+72+30(=117) \end{aligned}$			M1 for a complete method to find the surface area
	$\begin{aligned} & 1+0.1(=1.1) \text { or } \\ & 100(\%)+10(\%)(=110(\%)) \text { or } \\ & \frac{26.95}{110}(=0.245) \text { oe } \end{aligned}$			M1
	$\begin{aligned} & 26.95 \div " 1.1 "(=24.5(0)) \text { or } \\ & 26.95 \div \text { "110" } \times 100(=24.5(0)) \text { or } \\ & 26.95 \times 100 \div \text { "110" }(=24.5(0)) \text { oe or } \\ & " 0.245 " \times 100(=24.5(0)) \text { oe } \\ & \hline \end{aligned}$			M1 dep on previous M1
	$\begin{array}{\|l} " 117 " \div 15(=7.8 \text { or } 8) \text { and " } 8 " \times " 24.50 "(=196) \text { or } \\ " 117 " \div 15(=7.8 \text { or } 8) \text { and } 200 \div " 24.5 "(=8.1 \ldots) \text { or " } 117 " \\ \div 15(=7.8 \text { or } 8) \text { and } 200 \div " 8 "(=25) \end{array}$			M1for working with a whole number of tins (rounded up) to reach figures where a decision can be made
		Correct figures to show that Jonty is correct		$\begin{array}{\|l\|} \hline \text { A1 e.g. } 196 \\ \quad 7.8 \text { or } 8 \text { and } 8.1 \ldots \\ 24.5 \text { and } 25 \end{array}$
				Total 6 marks

$\mathbf{1 1}$	$\frac{110}{360} \times \pi \times 7.1^{2}$ oe or $\frac{110}{360} \times 3.14 \ldots \times 7.1^{2}$ oe	2	M1 for a complete method to find the area	
		48.4		A1 accept 48.3-49.2

12 (a)	$\begin{aligned} & n\left(3 n^{2}+5 n-12 n-20\right) \text { or } n\left(3 n^{2}-7 n-20\right) \text { or } \\ & \left(3 n^{2}+5 n\right)(n-4) \text { or }\left(n^{2}-4 n\right)(3 n+5) \text { or } \\ & 3 n^{3}+5 n^{2}-12 n^{2}-20 n \end{aligned}$		2	M1 for a correct partial expansion (may be unsimplified) (allow one error in the expansion of $(n-4)(3 n+5)$ e.g. for any 3 correct terms or for 4 out of 4 correct terms ignoring signs or for $3 n^{2}-7 n \ldots$ or for ... $-7 n-20$)
		$3 n^{3}-7 n^{2}-20 n$		A1 oe e.g. if correct answer seen allow further factorisation to $n\left(3 n^{2}-7 n-20\right)$
(b)	$\begin{aligned} & \frac{12}{4 x}+\frac{2(x+2)}{4 x}+\frac{x}{4 x} \text { oe or } \frac{12+2(x+2)+x}{4 x} \text { oe } \\ & \frac{3(8 x)}{8 x^{2}}+\frac{4 x(x+2)}{8 x^{2}}+\frac{2 x^{2}}{8 x^{2}} \text { oe or } \\ & \frac{3(8 x)+4 x(x+2)+2 x^{2}}{8 x^{2}} \text { oe } \end{aligned}$		3	M1 for three correct fractions with a common denominator or a single correct fraction
	$\begin{aligned} & \frac{12+2 x+4+x}{4 x} \text { oe or } \\ & \frac{24 x+4 x^{2}+8 x+2 x^{2}}{8 x^{2}} \text { oe or } \\ & \frac{6 x^{2}+32 x}{8 x^{2}} \text { oe or } \frac{3 x^{2}+16 x}{4 x^{2}} \text { oe or } \frac{6 x+32}{8 x} \text { oe } \end{aligned}$			M1 for a correct single fraction with brackets expanded
		$\frac{3 x+16}{4 x}$		A1 oe $\frac{16+3 x}{4 x}$
				Total 5 marks

13 (a)		$\frac{5}{12}$	2	B1 for first choice correct 0.41 ($666 \ldots$...) to 2 dp truncated or rounded
		$\frac{7}{12}, \frac{5}{12}$		B1 for second choice correct $0.58(333 \ldots)$ to 2 dp truncated or rounded 0.41 ($666 \ldots$) to 2 dp truncated or rounded
(b)	$" \frac{5}{12} " \times \frac{5}{12} \text { oe }$		2	M1 ft from their tree diagram $0.58(333 \ldots)$ to 2 dp truncated or rounded
		$\frac{25}{144}$		A1 oe $0.17(361111 \ldots$) to 2 dp truncated or rounded or 17.(361111)\% to 2 sf truncated or rounded
(c)	$\begin{aligned} & \frac{7}{12} \times \frac{5}{12} \times \frac{x}{15} \text { oe or } \frac{7}{12} \times \frac{5}{12} \times y \text { or } \\ & 2 \times \frac{7}{12} \times \frac{5}{12} \text { oe } \end{aligned}$		3	M1 for $G R B$ or $R G B$ or $2 \times G R$ or $2 \times R G$
	$2 \times \frac{7}{12} \times \frac{5}{12} \times \frac{x}{15}=\frac{7}{24}$ oe or $2 \times \frac{7}{12} \times \frac{5}{12} \times y=\frac{7}{24}$ oe or $\frac{\frac{7}{24}}{2 \times \frac{7}{12} \times \frac{5}{12}}\left(=\frac{3}{5}\right) \mathrm{oe}$			M1 (ft their tree diagram) for a complete method $0.29(166 \ldots)$ to 2 dp truncated or rounded
		9		A1
				Total 7 marks

14	```\(A B C=90^{\circ}\) and \(A C B(=A D B)=180-90-55(=\) 35) or \(A B O=55^{\circ}\) and \(A O B=180-2 \times 55(=70)\) or \(B D C=55^{\circ}, A D C=90^{\circ}\) and \(A D B=90-55(=35)\)```		4	M1
		35		A 1 for $A D B=35$
	Angles in a semicircle are 90° Angles in a triangle add to 180° (Angles in a $\underline{\text { triangle }}$ add to 180°) Angles in the same segment (are equal) OR angles at the circumference subtend(ed) from the same arc/chord of the circle (are equal) or Angles in an isosceles triangle (are equal) Angles in a triangle sum to 180° (Angles in a $\underline{\text { triangle }}$ add to 180°) Angle at the centre is $2 \times$ (double) angle at circumference / angle at circumference is $\underline{1 / 2}$ angle at centre or Angles in the same segment (are equal) OR angles at the circumference subtend(ed) from the same arc/chord of the circle Angles in a semicircle are 90°			B2 (dep on M1) for all 3 reasons appropriate to their method B1 (dep on M1) for one correct circle theorem appropriate to their method) NB For the third method only 2 reasons are required
				Total 4 marks

$\mathbf{1 5}$	E.g. $n, n+1, n+2$ $\left(n^{2}=\right) n^{2}$ $\left((n+1)^{2}=\right) n^{2}+n+n+1=n^{2}+2 n+1$ oe $\left((n+2)^{2}=\right) n^{2}+2 n+2 n+4=n^{2}+4 n+4$ oe or E.g. $n-1, n, n+1$ $\left((n-1)^{2}=\right) n^{2}-n-n+1=n^{2}-2 n+1$ oe $\left(n^{2}=\right) n^{2}$ $\left((n+1)^{2}=\right) n^{2}+n+n+1=n^{2}+2 n+1$ oe	3 M1 for 3 appropriate terms for their 3 numbers and for correctly finding the expansion of at least 2 squares (Allow $2 \times$ middle number +2$)$		
	$n^{2}+n^{2}+2 n+2 n+4\left(=2 n^{2}+4 n+4\right)$ oe and $2(n+1)^{2}=2 n^{2}+2 n+2 n+2\left(=2 n^{2}+4 n+2\right) \mathrm{oe}$ or $n^{2}-2 n+1+n^{2}+2 n+1\left(=2 n^{2}+2\right)$ oe		Complete proof	
	E.g. $2 n^{2}+4 n+4=2 n^{2}+4 n+2+2$ oe or $2(x+1)^{2}+2=2(x+1)^{2}+2$ oe or $2 n^{2}+2=2 n^{2}+2$ oe	M1 for finding the sum of first and last square and double the square of the middle (Allow $2 \times$ middle number +2$)$		
		A1 for conclusion from two correct expressions e.g. $2 n^{2}+4 n+4$ and $2 n^{2}+4 n+2$		

16	$\begin{aligned} & \frac{100}{2}[2 \times 1+(100-1) \times 4](=19900) \text { oe or } \\ & 1+(41-1) \times 4(=161) \text { oe or } \\ & 1+(100-1) \times 4(=397) \text { oe } \end{aligned}$		4	M1 for method to find the sum of the first 100 terms or for finding the $41^{\text {st }}$ term or for finding the $100^{\text {th }}$ term
	$\begin{aligned} & \frac{40}{2}(2 \times 1+(40-1) \times 4)(=3160) \text { oe or } \\ & \frac{41}{2}(2 \times 1+(41-1) \times 4)(=3321) \text { oe or } \\ & 100-41+1(=60) \text { oe } \end{aligned}$			M1 for method to find the sum of the first 40 terms or 41 terms or for finding the number of terms from the $41^{\text {st }}$ term to the $100^{\text {th }}$ term
	$\begin{aligned} & \text { "19900"-"3160" or } \\ & \frac{" 60 "}{2}[" 161 "+" 397 "] \text { or } \\ & \frac{" 60 "}{2}[2 \times " 161 "+(" 60 "-1) \times 4] \mathrm{oe} \end{aligned}$			M1 for finding the difference or for finding the sum from the $41^{\text {st }}$ term to the $100^{\text {th }}$ term
		16740		A1
				Total 4 marks

$\mathbf{1 7}$ (i)		19	1	B1
(ii)		0	1	B1
(iii)		11	1	B1
(iv)		28	1	B1
				Total 4 marks

$\mathbf{1 8}$	$\sqrt{4}: \sqrt{9}(=2: 3)$ or $\frac{\sqrt{4}}{\sqrt{9}}\left(=\frac{2}{3}\right)$ oe or $\sqrt{9}: \sqrt{4}(=3: 2)$ or $\frac{\sqrt{9}}{\sqrt{4}}\left(=\frac{3}{2}\right)$ oe	4 M1 for finding the ratio or fraction for lengths for $A: B$ or $B: A$		
	$\sqrt[3]{125}: \sqrt[3]{343}(=5: 7)$ or $\frac{\sqrt[3]{125}}{\sqrt[3]{343}}\left(=\frac{5}{7}\right)$ oe or			
$\sqrt[3]{343}: \sqrt[3]{125}(=7: 5)$ or $\frac{\sqrt[3]{343}}{\sqrt[3]{125}}\left(=\frac{7}{5}\right)$ oe		M1 for finding the ratio or fraction for lengths for $B: C$ or $C: B$		
	$A: B=10: 15$ and $B: C=15: 21$ oe		$10: 21$	M1 for mainpulating $A: B$ and $B: C$ so that both B values are equal
			A1 Allow $1: 2.1$ SC3 for $21: 10$ with all working shown	

(a)			1	B1
(b)	$3\left(x^{2}+4 x\right)+19$ and $3\left[(x+2)^{2}-2^{2}\right]+19$ or $3\left(x^{2}+4 x+\frac{19}{3}\right)$ and $3\left((x+2)^{2}-2^{2}+\frac{19}{3}\right)$ or $a=3$ and $2 a b=12$ oe and $b^{2} a+c=19$ oe or $a=3$ and $b=\frac{12}{2 \times 3}$ oe and $c=-\frac{12^{2}}{4 \times 3}+19$ oe			M1 for correctly taking out a factor of 3 and correctly completing the square or for equating coefficients by expanding $a(x+b)^{2}+c=a x^{2}+2 a b x+b^{2} a+c$ or for equating coefficients by using $a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c$
			$3(x+2)^{2}+7$	

$\mathbf{2 0}$ (a)(i)		$(-6,1)$	2	B1
(ii)		$(-2,-4)$		B1
(b)	$(-1,6),(3,-2),(7,6)$	Fully correct graph	2	B2 for a fully correct graph (B1 for a V shape with least value at $(3,-2))$
(c)		$-3,4$	2	B2 for 2 correct values in any order (B1 for 1 correct value)
			Total 6 marks	

$\mathbf{2 1}$	$16 \div 0.5(=32)$ or a correct value on the FD scale or 10 small squares =1 watermelon oe 25 small squares (1 large square $=16 \div 6.4=2.5$ watermelon oe		M1 for use of area to represent frequency or one correct frequency from the 4 remaining bars	
	$15 \times 1+16+23 \times 1+30 \times 1+12 \times 1.5$ or $15+16+23+30+18$ or $16+0.1 \times(15 \times 10+23 \times 10+30 \times 10+12 \times 15)$ oe or $(150+160+230+300+180) \times 0.1$ oe or $(6+6.4+9.2+12+7.2) \times 2.5$ oe		M1 (dep on M1) for a fully correct method, allow one error in products or number of squares but must be the sum of 5 parts	
			102	

$\left.\begin{array}{|l|l|l|l|l|}\hline 22 & 11.45 \text { or } 11.55 \text { or } 79.5 \text { or } 80.5 \text { or } 74.5 \text { or } 75.5 & & 4 & \begin{array}{l}\text { B1 } \\ \text { Accept } \\ 11.549 \\ \text { for } 11.55\end{array} \\ 80.49 \text { for } 80.5 \\ 75.49 \text { for } 75.5\end{array}\right]$

23	$3 t^{2}-2 \times 4 t+5$ or $3 t^{2}-8 t+5$		6	
	$3 t^{2}-2 \times 4 t+5=0$ or $3 t^{2}-8 t+5=0$	M1 for differentiation of s with 2 out of 3 terms correct (can be implied by subsequent working)		
	$(t=) \frac{5}{3}$ oe (and $\left.t=1\right)$	M1 (dep on previous M1) for equating at least a 2TQ to zero (allow inequality signs), E.g. $3 t^{2}-8 t=0$ or $3 t^{2}+5=0$ (can be implied by subsequent working)		
	$2 t-4=0$		A1 for $\frac{5}{3}$ (and $t=1$ may be crossed out or absent) (allow $\frac{5}{3}=1.6(66666)$ to 2 sf truncated or rounded)	
	$(t=) 2$	M1 for differentiation of x to find $a t+b=0$ (allow inequality signs) where $a=2$ and $b=$ -4		
		$(1<) t<\frac{5}{3}$ and $t>2$		A1 for a correct value of t

$\begin{aligned} & \hline 24 \\ & \text { ALT } \end{aligned}$	$(\overrightarrow{O N}=) \lambda(\mathbf{a}+\mathbf{b})(=\lambda \mathbf{a}+\lambda \mathbf{b})$ or $(\overrightarrow{N Y}=)(1-\lambda)(\mathbf{a}+\mathbf{b})(=(1-\lambda) \mathbf{a}+(1-\lambda) \mathbf{b})$		5	M1 for finding a vector for $\overrightarrow{O N}$ or $\overrightarrow{N Y}$ or $\overrightarrow{N O}$ or $\overrightarrow{Y N}$ in terms \mathbf{a} and \mathbf{b} and using λ oe
	$\begin{aligned} & (\overrightarrow{M N}=\overrightarrow{M O}+\overrightarrow{O N}=)-0.5 \mathbf{a}+\lambda \mathbf{a}+\lambda \mathbf{b}(=(\lambda-0.5) \mathbf{a}+\lambda \mathbf{b}) \text { or } \\ & (\overrightarrow{M N}=\overrightarrow{M X}+\overrightarrow{X Y}+\overrightarrow{Y N}=) 0.5 \mathbf{a}+\mathbf{b}+(\lambda-1)(\mathbf{a}+\mathbf{b})(=(\lambda-0.5) \mathbf{a}+\lambda \mathbf{b}) \end{aligned}$			M1 for finding a vector for $\overrightarrow{M N}$ or $\overrightarrow{N M}$ in terms a and \mathbf{b} and using λ oe
	$\begin{aligned} & (\overrightarrow{N Z}=\overrightarrow{N O}+\overrightarrow{O Z}=)-\lambda(\mathbf{a}+\mathbf{b})+3 \mathbf{b}(=-\lambda \mathbf{a}+(3-\lambda) \mathbf{b}) \text { or } \\ & (\overrightarrow{N Z}=\overrightarrow{N Y}+\overrightarrow{Y Z}=)(1-\lambda)(\mathbf{a}+\mathbf{b})-\mathbf{b}-\mathbf{a}+3 \mathbf{b}(=-\lambda \mathbf{a}+(3-\lambda) \mathbf{b}) \end{aligned}$			M1 for finding a vector for $\overrightarrow{N Z}$ or $\overrightarrow{Z N}$ in terms a and \mathbf{b} and using λ oe
	$\frac{\lambda-0.5}{-\lambda}=\frac{\lambda}{3-\lambda} \mathrm{oe}$			M1 for setting up an equation using the components of $\overrightarrow{M N}$ and $\overrightarrow{N Z}$ oe
		$\frac{3}{7}$		A1 (allow $\frac{3}{7}=0.42(8571 \ldots$) to 2 sf truncated or rounded)

